Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Open Forum Infect Dis ; 10(5): ofad278, 2023 May.
Article in English | MEDLINE | ID: covidwho-20237260

ABSTRACT

Prolonged coronavirus disease 2019 may generate new viral variants. We report an immunocompromised patient treated with monoclonal antibodies who experienced rebound of viral RNA and emergence of an antibody-resistant (>1000-fold) variant containing 5 mutations in the spike gene. The mutant virus was isolated from respiratory secretions, suggesting the potential for secondary transmission.

2.
Clin Infect Dis ; 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-20236445

ABSTRACT

We administered SARS-CoV-2 VST under emergency IND to 6 immunocompromised patients with persistent COVID-19 and characterized clinical and virologic responses: three patients had partial responses after failing other therapies but then died. Two patients completely recovered, but the role of VST in recovery was unclear due to concomitant use of other antivirals. One patient had not responded to two courses of remdesivir and experienced sustained recovery after VST. The use VST in immunocompromised patient with persistent COVID-19 requires further study.

3.
J Virol Methods ; 316: 114726, 2023 06.
Article in English | MEDLINE | ID: covidwho-2262553

ABSTRACT

Accurate and rapid evaluation of SARS-CoV-2 half-maximal neutralizing antibody (nAb) titer (NT50) is an important research tool for measuring nAb responses after prophylaxis or therapeutics for COVID-19 prevention and management. Compared with ACE2-competitive enzyme immunoassays for nAb detection, pseudovirus assays remain low-throughput and labor intensive. A novel application of the Bio-Rad Bio-Plex Pro Human SARS-CoV-2 D614G S1 Variant nAb Assay was used to determine NT50 from COVID-19-vaccinated individuals and showed strong correlation to a laboratory-developed SARS-CoV-2 pseudovirus nAb assay. The Bio-Plex nAb assay could provide a rapid, high-throughput, culture-free method for NT50 determination in sera.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2 , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing , Angiotensin-Converting Enzyme 2
4.
Annu Rev Med ; 2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-2231338

ABSTRACT

The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response. Expected final online publication date for the Annual Review of Medicine, Volume 74 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

5.
Nat Commun ; 13(1): 4696, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991586

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Epitopes/genetics , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
6.
iScience ; 25(8): 104798, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1936592

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

7.
Clin Infect Dis ; 75(1): e630-e644, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886372

ABSTRACT

BACKGROUND: We studied humoral responses after coronavirus disease 2019 (COVID-19) vaccination across varying causes of immunodeficiency. METHODS: Prospective study of fully vaccinated immunocompromised adults (solid organ transplant [SOT], hematologic malignancy, solid cancers, autoimmune conditions, human immunodeficiency virus [HIV]) versus nonimmunocompromised healthcare workers (HCWs). The primary outcome was the proportion with a reactive test (seropositive) for immunoglobulin G to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain. Secondary outcomes were comparisons of antibody levels and their correlation with pseudovirus neutralization titers. Stepwise logistic regression was used to identify factors associated with seropositivity. RESULTS: A total of 1271 participants enrolled: 1099 immunocompromised and 172 HCW. Compared with HCW (92.4% seropositive), seropositivity was lower among participants with SOT (30.7%), hematological malignancies (50.0%), autoimmune conditions (79.1%), solid tumors (78.7%), and HIV (79.8%) (P < .01). Factors associated with poor seropositivity included age, greater immunosuppression, time since vaccination, anti-CD20 monoclonal antibodies, and vaccination with BNT162b2 (Pfizer) or adenovirus vector vaccines versus messenger RNA (mRNA)-1273 (Moderna). mRNA-1273 was associated with higher antibody levels than BNT162b2 or adenovirus vector vaccines after adjusting for time since vaccination, age, and underlying condition. Antibody levels were strongly correlated with pseudovirus neutralization titers (Spearman r = 0.89, P < .0001), but in seropositive participants with intermediate antibody levels, neutralization titers were significantly lower in immunocompromised individuals versus HCW. CONCLUSIONS: Antibody responses to COVID-19 vaccines were lowest among SOT and anti-CD20 monoclonal recipients, and recipients of vaccines other than mRNA-1273. Among those with intermediate antibody levels, pseudovirus neutralization titers were lower in immunocompromised patients than HCWs. Additional SARS-CoV-2 preventive approaches are needed for immunocompromised persons, which may need to be tailored to the cause of immunodeficiency.


Subject(s)
COVID-19 , HIV Infections , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , Humans , Immunocompromised Host , Prospective Studies , SARS-CoV-2 , Vaccination
8.
J Infect Dis ; 226(5): 766-777, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1883015

ABSTRACT

BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (n = 18) and critical severity (n = 37) and in healthy controls (n = 10). RESULTS: We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Coronavirus Nucleocapsid Proteins , Humans , Immunoglobulin G , SARS-CoV-2
9.
J Infect Dis ; 2022 May 02.
Article in English | MEDLINE | ID: covidwho-1831179

ABSTRACT

Plasma SARS-CoV-2 viral RNA (vRNA) levels are predictive of COVID-19 outcomes in hospitalized patients, but whether plasma vRNA reflects lower respiratory tract (LRT) vRNA levels is unclear. We compared plasma and LRT vRNA levels in serially collected samples from mechanically ventilated patients with COVID-19. LRT and plasma vRNA levels were strongly correlated at first sampling (n=33, r=0.83, p<10-9) and then declined in parallel in available serial samples except in non-survivors who exhibited delayed vRNA clearance in LRT samples. Plasma vRNA measurement may offer a practical surrogate of LRT vRNA burden in critically ill patients, especially early after ICU admission.

10.
Clin Infect Dis ; 74(9): 1525-1533, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1831036

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA) is detected in the bloodstream of some patients with coronavirus disease 2019 (COVID-19), but it is not clear whether this RNAemia reflects viremia (ie, virus particles) and how it relates to host immune responses and outcomes. METHODS: SARS-CoV-2 vRNA was quantified in plasma samples from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-intensive care unit [ICU]), and 23 ICU patients. vRNA levels were compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in plasma. RESULTS: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6%, and 11.1% of ICU, non-ICU, and outpatients, respectively. Virions were detected in plasma pellets using electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (P < .0001); for inpatients, plasma vRNA levels were strongly associated with higher World Health Organization (WHO) score at admission (P = .01), maximum WHO score (P = .002), and discharge disposition (P = .004). A plasma vRNA level >6000 copies/mL was strongly associated with mortality (hazard ratio, 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (P < .01) but not with plasma neutralizing antibody titers (P = .8). CONCLUSIONS: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome, and specific inflammatory biomarkers but not with neutralizing antibody titers.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Biomarkers , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Viremia
12.
J Am Med Dir Assoc ; 22(8): 1593-1598, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1267723

ABSTRACT

OBJECTIVE: COVID-19 disproportionately impacts residents in long-term care facilities. Our objective was to quantify the presence and magnitude of antibody response in vaccinated, older adult residents at assisted living, personal care, and independent living communities. DESIGN: A cross-sectional quality improvement study was conducted March 15 - April 1, 2021 in the greater Pittsburgh region. SETTING AND POPULATION: Participants were older adult residents at assisted living, personal care, and independent living communities, who received mRNA-based COVID-19 vaccine. Conditions that impair immune responses were exclusionary criteria. METHODS: Sera were collected to measure IgG anti-SARS-CoV-2 antibody level with reflex to total anti-SARS-CoV-2 immunoglobulin levels, and blinded evaluation of SARS-CoV-2 pseudovirus neutralization titers. Descriptive statistics, Pearson correlation coefficients, and multiple linear regression analysis evaluated relationships between factors potentially associated with antibody levels. Spearman correlations were calculated between antibody levels and neutralization titers. RESULTS: All participants (N = 70) had received two rounds of vaccination and were found to have antibodies with wide variation in relative levels. Antibody levels trended lower in males, advanced age, current use of steroids, and longer length of time from vaccination. Pseudovirus neutralization titer levels were strongly correlated (P < .001) with Beckman Coulter antibody levels [D614 G NT50, rs = 0.91; B.1.1.7 (UK) NT50, rs = 0.91]. CONCLUSIONS AND IMPLICATIONS: Higher functioning, healthier, residential older adults mounted detectable antibody responses when vaccinated with mRNA-based COVID-19 vaccines. Data suggests some degree of immunity is present during the immediate period following vaccination. However, protective effects remain to be determined in larger studies as clinical protection is afforded by ongoing adaptive immunity, which is known to be decreased in older adults. This study provides important preliminary results on level of population risk in older adult residents at assisted living, personal care, and independent living communities to inform reopening strategies, but are not likely to be translatable for residents in nursing homes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibody Formation , Cross-Sectional Studies , Humans , Male , RNA, Messenger , SARS-CoV-2 , Vaccination
14.
Curr Opin HIV AIDS ; 16(1): 3-10, 2021 01.
Article in English | MEDLINE | ID: covidwho-927142

ABSTRACT

PURPOSE OF REVIEW: In response to the HIV-AIDS pandemic, great strides have been made in developing molecular methods that accurately quantify nucleic acid products of HIV-1 at different stages of viral replication and to assess HIV-1 sequence diversity and its effect on susceptibility to small molecule inhibitors and neutralizing antibodies. Here, we review how knowledge gained from these approaches, including viral RNA quantification and sequence analyses, have been rapidly applied to study SARS-CoV-2 and the COVID-19 pandemic. RECENT FINDINGS: Recent studies have shown detection of SARS-CoV-2 RNA in blood of infected individuals by reverse transcriptase PCR (RT-PCR); and, as in HIV-1 infection, there is growing evidence that the level of viral RNA in plasma may be related to COVID disease severity. Unlike HIV-1, SARS-CoV-2 sequences are highly conserved limiting SARS-CoV-2 sequencing applications to investigating interpatient genetic diversity for phylogenetic analysis. Sensitive sequencing technologies, originally developed for HIV-1, will be needed to investigate intrapatient SARS-CoV-2 genetic variation in response to antiviral therapeutics and vaccines. SUMMARY: Methods used for HIV-1 have been rapidly applied to SARS-CoV-2/COVID-19 to understand pathogenesis and prognosis. Further application of such methods should improve precision of therapy and outcome.


Subject(s)
COVID-19/virology , HIV Infections/virology , HIV-1/isolation & purification , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , COVID-19/blood , COVID-19/diagnosis , HIV Infections/blood , HIV Infections/diagnosis , HIV-1/genetics , Humans , RNA, Viral/blood , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL